On the Parallel Complexity of the Polynomial Ideal Membership Problem

نویسنده

  • Peter Bürgisser
چکیده

The complexity of the polynomial ideal membership problem over arbitrary fields within the framework of arithmetic networks is investigated. We prove that the parallel complexity of this problem is single exponential over any infinite field. Our lower bound is obtained by combining a modification of Mayr and Meyer's (1982) key construction with an elementary degree bound. 1998 Academic Press, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

Parallelizing Assignment Problem with DNA Strands

Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...

متن کامل

The membership probl mixed polynomial i solvable in single exp

Dickenstein, A., N. Fitchas, M. Giusti and C. Sessa, The membership problem for unmixed polynomial ideals is solvable in single exponential time, Discrete Applied Mathematics 33 (1991) 73-94. Deciding membership for polynomial ideals represents a classical problem of computational commutative algebra which is exponential space hard. This means that the usual al membership problem which are base...

متن کامل

The ideal membership problem and polynomial identity testing

Given a monomial ideal I = 〈m1,m2, · · · ,mk〉 where mi are monomials and a polynomial f as an arithmetic circuit the Ideal Membership Problem is to test if f ∈ I . We study this problem and show the following results. (a) If the ideal I = 〈m1,m2, · · · ,mk〉 for a constant k then there is a randomized polynomial-time membership algorithm to test if f ∈ I . This result holds even for f given by a...

متن کامل

A new algorithm for computing SAGBI bases up to an arbitrary degree

We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which cause a low level of complexity and computational cost. We then use it to solve the membership problem in subalgebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 14  شماره 

صفحات  -

تاریخ انتشار 1998